Chapter 14

Science and
Epistemology

In this chapter first we will bring our story more or less up-to-date,
and second we will round out some issues concerning the concepts
of knowledge and justification; that is, belief, knowledge, evidence
and degrees of justification, reliabilism, coherentism and founda-
tionalism, and the tripartite definition of knowledge (knowledge
as justified true belief).

14.1 An uneasy relationship

In the last chapter we looked at Kant’s views on our knowledge
of the a priori; space and time, as applications of the concepts of
geometry and number that we bring to bear in experience, and
certain high-level concepts—principally that of cause and effect—
that are not derived from experience but are brought to bear by
us in making sense of our experience.

This approach goes together with the idea that philosophy
is prior to natural science, that thinking about thought itself,
isolating what is a priori, is the first source of knowledge. On
this view philosophy generates the conceptual scheme used by
other disciplines, so natural science has to wait on and follow
on from the discoveries of philosophers. The last great proponent
of this view was G.W.F. Hegel (1770-1831), whose three volume
Encyclopaedia of the Philosophical Sciences, devoted to logic (the
study of forms of thinking, the a priori), and its applications (the
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166 Science and Epistemology

philosophy of nature and the philosophy of mind), was intended
to provide a comprehensive philosophical foundation for all sub-
sidiary disciplines, including natural science. But even in Hegel’s
lifetime such an approach was increasingly untenable and as the
nineteenth and the twentieth centuries progressed the star of nat-
ural science rose, eclipsing that of philosophy. So in this section I
will briefly bring our story up-to-date as a backdrop to the topics
we will look at in the rest of this chapter. First, we will look at
two major developments in the nineteenth century that under-
mined Kant’s conception of a priori knowledge, concerned with
geometry and number.

Geometry

Kant’s argument, as we have seen, is that we perceive space in
terms of Euclidean geometry because Euclidean geometry is, so
to speak, hard-wired into our minds. This is the basis of Kant’s
account of the necessity and universal applicability of geometry;
these follow automatically from the idea that in making sense
of the spatial arrangements of things in the world around us we
bring Euclidean geometry to bear.

In the nineteenth century, though, non-Euclidean geometries
were developed, principally by Riemann and Lobachevsky. Imag-
ine you are standing at the North Pole. You walk due south until
you get to the equator—about 6200 miles—and turn left through
90°, and walk a further 6200 miles. Now turn left again through
90° and walk due North, again about 6200 miles, until you are
back at the North Pole. Your original path is 90° to you, so
you have walked three straight lines, come back to the point you
started at—just as if you had walked a triangle—yet the included
angles add up to 270°. How can this be? The reason is that the
earth is not flat, it is a sphere, so applying geometry on the surface
of the earth over any significant distance involves non-Euclidean
geometry (geometries in which the included angles of a triangle
add up to more than, or less, than 180°, on surfaces that are either
convex or concave).

A similar effect occurs with parallel lines. Euclid’s geometry
includes the parallel postulate, that given a line L and a point =
not on L, exactly one line can be drawn through x that never
meets L, however much we extend the two lines. But this does
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not work on a curved surface. Two lines either converge, in which
case they touch sooner or later, or they diverge, in which case
they may eventually loop back on one another.

The crunch comes with Einstein’s theory of relativity. This
shows that space is not conceptually distinct from time, and that
space-time is curved (5.3). But this does not prove that Kant was
wrong. It could be that we can only perceive space in terms of
Euclidean geometry because while the range of our perceptual ap-
paratus, unaided, is enormous—we can, after all, “see” stars light
years away (we see the light emitted from them years ago)—our
capacity to discriminate is not nearly so great. To “see” the red
shift effect we have to use sophisticated experimental techniques
and apply sophisticated theoretical methods. Perhaps, then, we
perceive what there is in terms of Fuclidean geometry, and apply
theoretical techniques to make appropriate adjustments. Never-
theless we have some reason to be wary of making a priori claims
about Euclidean geometry.

Further, this suggests that the Kantian project of identify-
ing what is necessary and a priori as aspects of judgements con-
tributed by us is possibly misguided. Kant devised this approach
as a bulwark against Humean scepticism, which he associates with
empiricism. If non-Euclidean geometry furnishes grounds for re-
jecting Kant’s approach, and if pragmatically the success of mod-
ern science undermines the grounds for scepticism, then perhaps
we can reasonably adopt empiricism. This question will be taken
up later in the present chapter.

Number

As we also saw, Kant associates number with time, with our abil-
ity to count; as someone might count under their breath 1, 2, 3,
and so on, so Kant suggests that we are aware of number. Many
events might happen in the time it takes me to count to one
thousand, and these events will all have a temporal ordering, an
ordering I can ascribe numbers to.

The development that matters here in the nineteenth century
was that of axiomatisation. In the case of number the axioms are
those set out by the Italian mathematician Guiseppe Peano in
1899:
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0 is a number.

The immediate successor of a number is a number.

0 is not the immediate successor of any number.

No two numbers have the same immediate successor.

Any property belonging to 0, and also to the immediate
successor of every number that has the property, belongs to
all numbers (principle of mathematical induction).

ANl

Instead of thinking of numbers as things, axiomatisation
enables us to think of them in terms of a set of rules. These
rules define the permissible manipulations of symbols, that is,
they define not things but structures. A line of clothes pegs on
a washing line is as good a model of the beginning sequence of
the natural numbers as saying one, two, three, and so on, out
loud, and does not require any reference to a thinking being. On
this view mathematics is about structures, not things, and math-
ematical knowledge is knowledge of rules for manipulating these
structures, not knowledge of things. For example:

A two-legged duck has two legs.

is a tautology, because the subject (“a two-legged duck”) already
contains the predicate (“has two legs”). Similarly:

2+2=4

is a tautology, as a meaning of “4” is “242” (other “meanings”
are 22, 5 — 1, and so on). In a post office you might find a letter-
sorting machine; you put a pile of letters into the hopper, it scans
the postcodes, and outputs the letters into a series of pigeon holes.
Barring malfunctions the output is the same as the input, only it
is sorted (a structure has been imposed upon it). The underlying
idea is that arithmetic, and mathematics generally, is a colossal
collection of tautologies that adds no content; it is a collection
of techniques for ordering and arranging whatever content it is
applied to.

As with non-Euclidean geometry, we have grounds for dis-
carding Kant’s approach. The necessity of mathematics does not
arise from its realisation in the rational faculty, imposed by us in
making judgements about the world. Rather it reflects the idea
of mathematics as a contentless collection of structures, a set of
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techniques that acts as a bridge between sets of propositions; from
an initial plan to build a bridge over a river, perhaps, to a fin-
ished scheme fully calculated and optimised to cope with weather
conditions and traffic loads.

Furthermore these developments, coupled with the fallout from
the development of quantum mechanics in the 1920s, undermined
the idea of theory of knowledge as a subject distinct from natu-
ral science, let alone prior to it. If theory of knowledge is about
how we form accurate, reliable beliefs about what there is—beliefs
that are appropriately justified, are true—as science (I'll drop the
“natural” from hereon) is the most successful enterprise going in
this area, perhaps theory of knowledge should be refocussed as a
descriptive study of scientists about their work.

Reliabilism

Here is an example of this sort of approach. If a dark speck moves
close enough to a frog, it will shoot out its tongue, catch it and
eat it. A frog has to eat, so frogs that survive will be those that
are most effective at discriminating and catching passing insects.
If a frog catches an insect, its belief-forming mechanism (“that’s
edible and within range”) has generated the answer “true”. If
it fails (it was not an insect but a speck of soot, it was not in
range) then it’s belief-forming mechanism has generated an error
(a falsehood). A frog that is consistently wrong will not live for
long and probably will not reproduce, so over time it is likely that
frogs will manifest more accurate belief-forming mechanisms.

Successful frogs will be those with a reliable belief-forming
process when it comes to food. This is known as reliabilism, and
it applies in similar ways to people. Those who are effective in
achieving what they set out to do are likely to be more successful,
all else being equal. Their beliefs are justified because they are
generated by reliable belief-forming mechanisms. So if we want
to study knowledge, perhaps we should study the belief-forming
processes of successful people. In this way the theory of knowledge
would become a branch of psychology, in which we study success-
ful people, in order to extrapolate principles that underlie their
success and to see how we can teach these principles to others.
We would, of course, also look at the less successful as an example
of how not to go about things.
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While reliabilism has some attractive and plausible aspects, it
does not obviously have much to say as to why a belief-forming
process is reliable. A clairvoyant might be reliable but there is no
obvious reason why they are reliable. Someone who is a reliable
guide to wine, for example, will be someone who has studied their
subject, has a wide experience of tasting and has a sophisticated
palette. You would have good reason to trust such a person’s
judgement in their field, to think that their judgments are likely
to be accurate and consistent. But this seems to sever the link
between knowledge and evidence, because if somebody is reliable
then they just are reliable; that they are reliable is its own jus-
tification. This is why reliabilism is called a “non-justificatory”
approach in theory of knowledge. We will look more closely at
such relationships between concepts in 14.5.

14.2 Verificationism and evidence

Before the emergence of epistemology as a descriptive enterprise,
it was profoundly influenced in the 1920s by logical empiricism
(the label “logical empiricism” is now more generally used than
“logical positivism”). The most influential proponents of this
approach comprised the Vienna Circle, a group mainly of sci-
entists with philosophical interests. Logical empiricism combined
the approach to the a priori sketched above, that the a priori is a
collection of tautologous principles that can be used for ordering
or structuring data given in experience, that is, what is given a
posteriori. Combining the latter with the former yields, so they
argued, properly scientific knowledge about the world and about
ourselves (the task of a properly scientific psychology).

Logical empiricism begins with the “Verification Principle”
(verificationism). This is Ayer’s version:

We say that a sentence is factually significant to any given
person, if, and only if, he knows how to verify the proposi-
tion which it purports to express—that is, if he knows what
observations would lead him, under certain conditions, to
accept the proposition as being true, or to reject it as being
false. (Language, Truth and Logic, p.16)

The connection of truth-value with observation is significant.
By proposition is meant, more and less, what a sentence says:
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the sentences “Snow is white” and “La neige est blanche” say that
snow s white so, since we are interested in the things themselves,
it is propositions we are interested in. Here is a programmatic
statement of logical empiricism’s central doctrines from Rudolf
Carnap, one of the leaders of the Vienna Circle:

What, then, is the method of verification of a proposition?
Here we have to distinguish between two kinds of verifica-
tion: direct and indirect. If the question is about a propo-
sition which asserts something about a present perception,
e.g. “now I see a red square on a blue ground”, then the
proposition can be tested directly by my present percep-
tion. If at present I do see a red square on a blue ground,
the proposition is directly verified by this seeing; if I do not
see that, it is disproved. To be sure, there are still some
serious problems in connection with direct verification. We
will however not touch on them here, but give our atten-
tion to the question of indirect verification, which is more
important for our purposes. A proposition P which is not
directly verifiable can only be verified by direct verification
of propositions deduced from P together with other already
verified propositions.

Let us take the proposition Pi: “This key is made of iron.”
There are many ways of verifying this proposition; e.g.: 1
place the key near a magnet; then I perceive that the key is
attracted. Here the deduction is made in this way:

Premises:

P; “This key is made of iron”; the proposition to be ex-
amined.

P “If an iron thing is placed near a magnet, it is at-
tracted”; this is a physical law, already verified.

P3 “This object—a bar—is a magnet”; proposition already
verified.

P4 “The key is placed near the bar”; this is now directly
verified by our observation.

From these four premises we can deduce the conclusion:

P5 “The key will now be attracted by the bar.”
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This proposition is a prediction which can be examined by
observation. If we look, we either observe the attraction or
we do not. In the first case we have found a positive instance,
an instance of verification of the proposition P under con-
sideration; in the second case we have a negative instance,
an instance of disproof of Pj.

In the first case the examination of the proposition Py is
not finished. We may repeat the examination by means of a
magnet, i.e. we may deduce other propositions similar to Pj
by the help of the same or similar premises as before. After
that, or instead of that, we may make an examination by
electrical tests, or by mechanical, chemical, or optical tests,
etc. If in these further investigations all instances turn out
to be positive, the certainty of the proposition P; gradually
grows. We may soon come to a degree of certainty suffi-
cient for all practical purposes, but absolute certainty we
can never attain. The number of instances deducible from
P1 by the help of other propositions already verified or di-
rectly verifiable is infinite. Therefore there is always a pos-
sibility of finding in the future a negative instance, however
small its probability may be. Thus the proposition Py can
never be completely verified. For this reason it is called an
hypothesis.

So far we have considered an individual proposition con-
cerning one single thing. If we take a general proposition
concerning all things or events at whatever time and place,
a so-called natural law, it is still clearer that the number of
instances is infinite and so the proposition is an hypothesis.

Every assertion P in the wide field of science has this
character, that it either asserts something about present
perceptions or other experiences, and therefore is verifiable
by them, or that propositions about future perceptions are
deducible from P together with some other already veri-
fied propositions. If a scientist should venture to make an
assertion from which no perceptive propositions could be
deduced, what should we say to that? Suppose, e.g., he as-
serts that there is not only a gravitational field having an
effect on bodies according to the known laws of gravitation,
but also a levitational field, and on being asked what sort of
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effect this levitational field has, according to his theory, the
answer is that there is no observable effect; in other words,
he confesses his inability to give rules according to which
we could deduce perceptive propositions from his assertion.
In that case our reply is: your assertion is no assertion at
all; it does not speak about anything; it is nothing but a
series of empty words; it is simply without sense. (Carnap,
Philosophy and Logical Syntaz, Kegan Paul Trench Trubner
& Co., 1935, p.10-14)

This is a foundationalist approach to knowledge, because
it begins with evidence derived from observation and builds on it
(using tautologous principles). Logical positivism is, as noted ear-
lier, now called “logical empiricism”, because it is a combination
of logic (the tautologous ordering/structuring principles we met
earlier) and empiricism about what is observable, what can be
experienced. This is why Carnap denies that any law derived from
experience in this way—Dby induction—can ever be certain. Hence
Carnap denies, in the spirit of Locke (7.5), and Hume (12.2), that
necessary truths can ever be derived from experience alone.

At the end of Chapter 12 we touched on the question of
whether scientific method is inherently sceptical. We can now re-
fine this and suggest that we regard the results of scientific inves-
tigations as inherently defeasible; we are prepared to accept that
any scientific theory we hold at present may be revised, and may
even be proven false, at some point in the future. If induction and
defeasibility are central to scientific methodology, then applying
them to scientific enquiries themselves shows that theories held at
past times have been revised and/or superseded, suggesting that
our present theories may in turn be revised and/or superseded
by new theories as yet unthought. It is of course possible that
some of our present theories will never be revised or superseded;
does that make them necessary truths, true everywhere and ev-
erywhen? How can we ever know? With this background in place,
we will turn to perhaps the biggest debate in twentieth century
epistemology, that between foundationalism and coherentism.
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